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Direct Solution of Linear Systems of Equations

q Need a triangular factorization of the coefficient matrix.
q Require a finite number of operations to compute the solution.
q Can pivot to maintain numerical stability.

q Suffer from fill (zero entries turn into nonzero) when 
coefficient matrix is sparse.
§ Manage fill.
§ Cost of Gaussian elimination.

q Need extra processing for sparse matrices.
§ Ordering
§ Symbolic factorization
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Iterative Solution of Linear Systems of Equations

q Start with an initial guess of the solution.
q Generate a sequence of approximations.
q Often require only matrix-vector multiplications and inner 

products.
§ Great for sparse linear systems since no matrix factorizations are 

needed.

q Generating the sequence???
q Convergence of the sequence???
q Often unpredictable number of operations.
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Iterative Solution of Linear Systems of Equations

q Many iterative methods and lot of theory.

q Excellent references:

§ Richard Barrett, Michael Berry, Tony Chan, James Demmel, June 
Donato, Jack Dongara, Victor Eijkhout, Roldan Pozo, Charles 
Romine, and Henk van der Vorst, “Templates for the Solution of 
Linear Systems: Building Blocks for Iterative Methods”, SIAM, 
1994.

§ Yousef Saad, “Iterative Methods for Sparse Linear Systems”, 
available from http://www-users.cs.umn.edu/~saad/books.html.

§ Henk van der Vorst, “Iterative Krylov Methods for Large Linear 
Systems”, to be published in 2003.



E.G. Ng / 5

Iterative Solution of Linear Systems of Equations

q Some are simple:
§ Jacobi
§ Gauss-Seidel
§ Successive overrelaxation and symmetric successive 

overrelaxation

q Others are more complicated:
§ Conjugate gradient and generalized conjugate gradient
§ Minimum residual and generalized minimal residual
§ Biconjugate gradient and biconjugate gradient stabilized
§ Conjugate gradient squared
§ Quasi-minimal residual
§ Chebyshev iterations
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The Conjugate Gradient Method

q For symmetric positive definite linear systems, the conjugate 
gradient method is the most popular method.

q Based on minimizing a convex quadratic function.

q The minimizer is given by the solution of  Ax = b .

T T1(x) x Ax x b
2

φ = −
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The Conjugate Gradient Method

q Basic idea in minimizing  φ(x) = ½xTAx − xTb :

§ Given an approximation to the minimizer, x(i-1).
§ Select a search direction p(i).
§ Minimize  φ(x)  along the direction x(i-1) + α p(i).
® This becomes a problem of a single (scalar) variable: α.

§ Let  αi be the minimizer.
§ Then set  x(i) = x(i-1) + αi p(i).
§ Repeat …

q Choice of search directions  p(i) ?
§ Chosen so that they are A-orthogonal (or A-conjugate).

[p(i)] T A [p(j)] = 0 , for i ≠ j .
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The Conjugate Gradient Method
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The Conjugate Gradient Method

q Need 2 inner products and 1 matrix-vector multiplication.
§ Great for sparse linear systems.
§ No fill to worry about.

q Parallel implementation of the conjugate gradient method.

§ Assume that each vector is partitioned among the processors.
§ Partial inner products can be computed in parallel and then globally 

summed.

§ Need parallel sparse matrix-vector multiplication!
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Notion of Preconditioning

q Lot of theory on the conjugate gradient method …

§ The conjugate gradient method converges in at most n iterations.
® Krylov subspaces.
® In practice, difficult to say because of roundoff errors.

§ If A has  m  distinct eigenvalues, then the conjugate gradient 
method requires  m  iterations to converge to a solution.
® Desirable to have a small number of clustered eigenvalues.

q To improve the convergence, change the eigenvalues of the 
coefficient matrix.
§ The preconditioning step.
§ Many choices.
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Preconditioning

q Consider  Ax = b ;  A  symmetric positive definite.

q Let  K  be a nonsingular matrix.
q Then  KAKT is symmetric positive definite.
q Instead of solving  Ax = b, solve

with  B = KAKT as the coefficient matrix,  c = Kb  as the right-
hand side, and  y = K-Tx as the unknown vector.

q The eigenvalue distribution for  B = KAKT may be quite 
different from that of  A .
§ K  is referred to as the preconditioning matrix or preconditioner.

q Choice of  K ?

( ) ( )T TKAK K x By c Kb .− = = =
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Preconditioning … An Example

q A  is symmetric and positive definite.
q Let  L  be the Cholesky factor of  A :  A = LLT .

q Suppose we were able to set  K = L-1 .
q Then  KAKT = L-1AL-T = L-1(LLT) L–T = (L-1L)(LTL–T) = I .

q The conjugate gradient method, when applied to
(KAKT) (K-T x) = (K b) ,

will converge in 1 iteration.

q Need more realistic choices.
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Approximate Triangular Factorization

q Talked about sparse Gaussian elimination last time.

q If  A  is symmetric positive definite, then  A = LLT , with L 
being lower triangular (Cholesky factorization).

q Instead of computing  L  exactly, we can compute an 
approximation to  L :  La .

q Then set  K = La
-1 .

q If  La is a good approximation to  L , then  KAKT will be close 
to  I , and  La will be a good preconditioner for  A .

q How to construct the approximation?
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Incomplete Triangular Factorization

q Recall that the triangular factorization of a sparse matrix  A  
will change some of the zero entries into nonzero (fill).

q Idea for constructing the approximation:
§ Discard some of the fill entries in the factorization.
§ The discarded fill entries may or may not participate in updating 

future columns (depending on the algorithms and location of fill).
§ Resulting triangular factor is inexact, and is called an incomplete 

factor.
§ Simplest dropping criterion:  Discard all fill entries.
§ Many other ways to drop fill to produce an incomplete 

factorization.

q Matrix may lose positive definiteness.
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Example of Sparse Cholesky Factor

Blue dots are the original 
nonzero entries.

Red dots are the fill entries.
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Computing Incomplete Factorization in Parallel

q Once a dropping criterion is decided, the incomplete 
factorization can be computed in parallel, much like sparse 
complete factorization although there are fewer operations 
and less fill.
§ Column modifications  cmod(j1,k)  and  cmod(j2,k) can be performed 

in parallel as long as columns  j1 and  j2 are assigned to different 
processors and as long as column  k  of the factor is made available 
to  j1 and  j2 .
§ Some of the cdiv operations can also be performed in parallel.

q Related issues:  ordering and symbolic factorization.
§ Different from sparse direct methods and can be much more 

difficult.
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Computing Incomplete Factorization in Parallel

q It is much harder to get good efficiency in parallel incomplete 
factorization than in parallel complete factorization.

q Why?
§ Usually much fewer operations to perform.
§ Unlike sparse complete factorization, usually no dense submatrices

to allow memory hierarchy to be exploited.
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A Left-looking Block Incomplete Factorization

q Based on the theory and left-looking algorithms for sparse 
complete Cholesky factorization [Ng/Raghavan ’99-’01].

q Choice of dropping criterion:
§ Nonzero entries that do not satisfy a threshold condition are 

dropped from the Cholesky factor, and they do not participate in 
updating later columns of A.

q Take advantage of the supernodal structure to exploit memory 
hierarchy.
§ Drop rows of nonzero entries instead of individual nonzero entries.
® Within a supernode, a row of nonzero entries is dropped if all entries 

satisfy the threshold condition.
® Force dense blocks to be retained.
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Left-looking Block Incomplete Factorization
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Left-looking Block Incomplete Factorization

q Requiring a row of nonzero entries within a supernode to be 
dropped is a very stringent condition … may lead to too few 
nonzero entries being dropped in large supernodes.

q Remedy:  Divide each large supernode into small blocks (e.g., 
block size 2, 4, or 8).

q This forces a block structure in the incomplete factorization.

q Can be implemented easily in the framework of (serial/parallel) 
sparse complete factorization.
§ Still exploit memory hierarchy.
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Preconditioned Conjugate Gradient Method
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Observations

q Effect of increasing block size:
§ Increase fill and operation count, but improve quality of 

incomplete factor as a preconditioner.
§ Decrease time to compute incomplete factor.
§ Modest change in triangular solution time.



E.G. Ng / 31

Experimental Results

q Heat equations on 2-D and 3-D grids.

q Problems chosen so that number of nonzero entries per 
processor is approximately constant as number of processors 
increases.

p N/2-D N/3-D
1 40,000 27,000
2 73,441 42,875
4 138,384 74,088
8 252,004 125,000

16 467,856 195,112
32 891,136 314,432
64 1,679,616 531,441
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Incomplete Factorization Times for 2D Grids
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Incomplete Factorization Times for 3D Grids
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Preconditioned Conjugate Gradient Method
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Parallel Conjugate Gradient Method

q Need to solve 2 sparse triangular systems at every iteration of 
conjugate gradient.

q Can become the bottleneck in a parallel environment …
§ Triangular solutions are sequential in nature because of the 

substitution process.
§ There is parallelism in sparse triangular systems, but too much 

synchronization and too few operations, resulting in poor 
scalability.
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Parallel Sparse Triangular Solutions

q Replace the substitution process in a triangular solution by a 
sequence of matrix-vector multiplications, which has a higher 
degree of parallelism.

q The extreme:
§ Explicitly invert a triangular matrix?
® Explicit inverse of a sparse triangular matrix is typically dense.
® Expensive to compute and expensive to store.

q Alternatives?
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Consider The Dense Case

q Let  T  be a lower triangular matrix.
q Solve  Tx = b .

q Suppose  T  is partitioned into a block 2×2 matrix:

q Partition  b  and  x  accordingly:

11

21 22

T 0
T

T T
 

=  
 

11

22

xb
b ; x

xb
   

= =   
  

q Then the solution  x  is given by

( )

1
11 1 1 1 11 1

1
21 1 22 2 2 2 22 2 21 1

T x b x T b
T x T x b x T b T x

−

−

= ⇒ =

+ = ⇒ = −

q Can avoid triangular solution if we have 1 1
11 22T   and  T   explicitly.− −



E.G. Ng / 38

Sparse Triangular Solutions

q Apply the idea to sparse triangular matrices that 
exhibit dense blocks on the diagonal, such as those 
from block (complete/incomplete) factorizations.

§ Selective inversion – Compute the inverse of each dense 
diagonal block [Raghavan ’97].

§ Related work:  Anderson/Saad ’89; Alvardo/Schreiber 
’93; Heath/Raghavan ’98; Raghavan ’98; 
Teranishi/Raghavan/Ng ’02.



E.G. Ng / 39

Performance of Selective Inversion

q Consider sparse symmetric positive definite matrices.
q Performance results based on complete Cholesky factorization.

q Consider cost of factorization + cost of multiple triangular 
solutions on a distributed-memory multiprocessor machine.

q Compare traditional substitution and selective inversion.

q Finite element matrices from a square grid.
§ Grid size varies with number of processors so that triangular 

solution work per processor is about constant.
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Performance of Selective Inversion
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Performance of Selective Inversion

q Small penalty in computing inverses of diagonal blocks.
q Big improvements when solving multiple right-hand sides.

q The results show that selective inversion has the potential of 
improving the performance of multiple triangular solutions in 
iterative methods with incomplete factorizations as 
preconditioners.
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Performance of Selective Inversion
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If one is willing to compute some sort of 
factorization of a sparse matrix as a 
preconditioner, then there is essentially 
no difference between sparse direct 
methods and preconditioned iterative 
methods.

Summary
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Project Idea

q Talked about SuperLU/SuperLU_MT/SuperLU_DIST last time.
§ Exploit dense blocks in supernodes.

q Incorporate selective inversion into sparse triangular solution.
§ Need to understand the data structure in SuperLU.
§ Need to identify the diagonal blocks.
§ Invert the diagonal blocks.
§ Rewrite the triangular solution in terms of inverses of the diagonal 

blocks.
q Both Sherry Li (XSLi@lbl.gov) and I (EGNg@lbl.gov) can help.


